
A Data Scientist's perspective and lessons learned

Iiro Toppila, M.Sc. (Tech)
Medaffcon Oy
Data Analysis Lead

Agenda

- 1. Medaffcon and me in 30 seconds
- 2. Lessons learned: Data mapping
- 3. Lessons learned: Readiness and collaboration

Focus Areas of Medaffcon

Medical Affairs

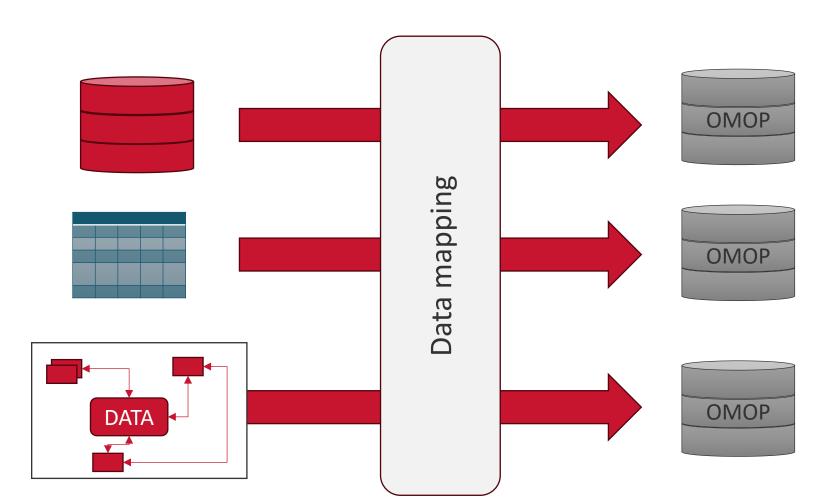
Iiro Toppila

Data Analysis Lead M.Sc. (Tech.)

At Medaffcon since 2017

20+ Peer-reviewed publication on RWE studies by Medaffcon

No conflict of interest nor Interest in conflicts



Data mapping

Important step – data mapping to OMOP

- Retain all relevant data and avoid relevant information loss in data transformation
- Personal opinion: Requires insight and experience from primary data source, and the possible use cases of mapped data
- Any resulting analyses from mapped OMOP data are as good as the mapping

Case example

- Patient group: CVD Secondary prevention patients
 - i.e. patients, that have had major CVD event
- Main treatment goal is to prevent any consecutive MACE events (via interventions)
- One of the most important outcome measurements in epidemiological setting (on top of survival) is the recurrence rate and time to recurrence.
 - But the recurring event might not be straight forward to identify from the data...

Let's consider "dummy" case example of epidemiological study, where we want to assess the event rate of major CVD event recurrency using register or hospital data (in OMOP setting naturally)

Previous work

Annals of Hematology https://doi.org/10.1007/s00277-022-04959-9

ORIGINAL ARTICLE

Comorbidity characteristics of multiple myeloma patients diagnosed in Finland 2005–2016

liro Toppila¹ · Kai Kysenius¹ · Tatu Miettinen¹,² · Mariann Ida Lassenius¹ · Juha Lievonen³ · Pekka Anttila³

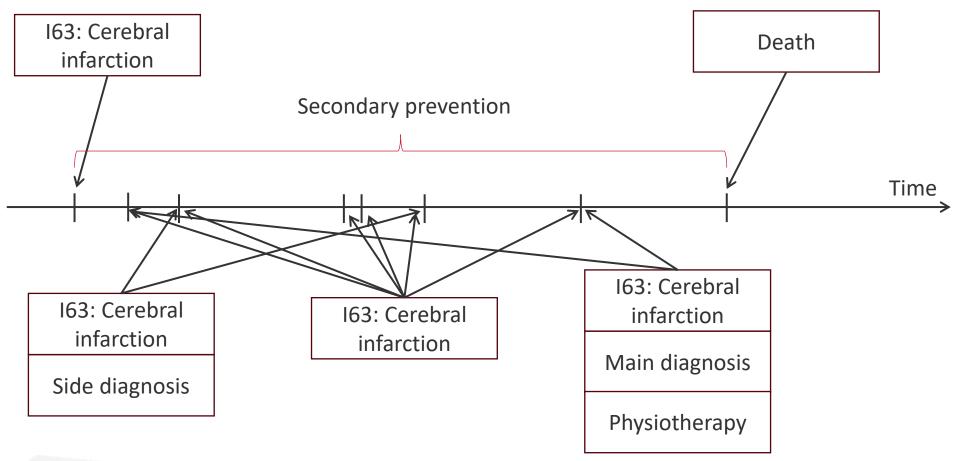
Preventive Cardiology

Full research paper

Cardiovascular event rates increase after each recurrence and associate with poor statin adherence

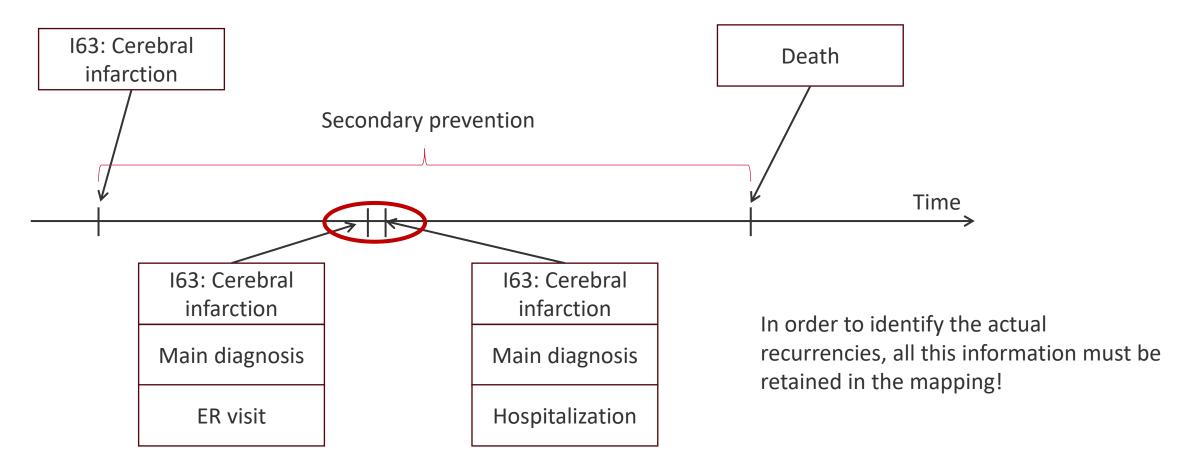
Mariann I Lassenius¹, Iiro Toppila¹, Susanne Bergius², Julia Perttilä², KE Juhani Airaksinen³ and Mikko Pietilä³

European Journal of Preventive Cardiology 0(00) 1–10 © The European Society of Cardiology 2020 Article reuse guidelines: sagepub.com/journals-permissio DOI: 10.1177/20474873209043 journals.sagepub.com/home/cpr


Cardiovascular event rate and death in high-risk secondary prevention patient cohort in Finland: A registry study

liro Toppila MSc¹ | Liisa Ukkola-Vuoti PhD¹ | Julia Perttilä PhD² | Outi Törnwall PhD³ | Juha Sinisalo MD, PhD⁴ | Juha Hartikainen MD, PhD⁵ Seppo Lehto MD, PhD⁶

- Non-OMOP setup; varying definitions and ways to identify MACE and recurrent CVD events
- Primary source hospital data-lakes or national registers



Dummy example – Stroke patient

Dummy example – Stroke patient

Take home message & final thoughts

- When mapping the data, try to retain all possible (relevant) info
 - Who knows what is relevant?
 - Poor mapping will result into low quality data which will further produce unreliable results
 - Invest into Sr. Personnel whom understand the primary data, but also the later use cases and how to analyze the data
- When using the OMOP data, understand the primary source and that it is fit for purpose!
 - National register, hospital data, cohort study, and quality register are completely different, even when OMOP'ed
 - Clear documentation of mapping process, and even opensource scripts?

Contacts

Iiro Toppila

Data Analysis Lead +358 44 314 15 97 iiro.toppila@medaffcon.fi

News letter subscription

